DeepFake是使用AI方法产生或操纵的内容或材料,以便像真实一样传递。有四种不同的DeepFake类型:音频,视频,图像和文本。在这项研究中,我们专注于音频Deew,以及人们如何感知它。有几个音频DeepFake发电框架,但我们选择梅尔甘,这是一个非自动增加和快速的音频DeepFake产生框架,需要更少的参数。本研究试图评估来自不同专业大学生的音频深蓝。本研究还回答了他们的背景和主要可能影响他们对AI生成的深度的看法的问题。我们还基于以下不同方面分析结果:年级水平,语法的复杂性,音频剪辑中使用的语法,音频剪辑的长度,那些了解术语的人和那些没有政治角度的人和那些。有趣的是,结果表明当一个音频剪辑有政治内涵时,即使内容相当相似,它也会影响人们是否是真实的或假的。这项研究还探讨了背景和主要可能影响对德国人的看法的问题。
translated by 谷歌翻译
DeepFake是使用人工智能(AI)方法合成生成或操纵的内容或材料,以防止真实,并且可以包括音频,视频,图像和文本合成。与现有的调查论文相比,此调查与现有的调查文件相比具有不同的视角,主要专注于视频和图像Deewakes。该调查不仅评估了不同的DeepFake类别中的生成和检测方法,而且主要关注大多数现有调查中被忽视的音频Deewakes。本文重视分析并提供了一个独特的音频Deepfake研究来源,主要是从2016到2020年的范围。据我们所知,这是第一个专注于英语中音频Deewakes的调查。本次调查为读者提供了摘要1)不同的DeepFake类别2)如何创建和检测到它们3)该领域的最新趋势和检测方法中的缺点4)音频DeepFakes,如何更详细地创建和检测到它们这是本文的主要重点。我们发现生成的对抗性网络(GAN),卷积神经网络(CNN)和深神经网络(DNN)是创建和检测德刀的常见方式。在我们对超过140种方法的评估中,我们发现大多数重点都在视频Deewakes上,特别是在播放视频德国。我们发现,对于文本Deew,有更多的一代方法,但较少的检测方法,包括假新闻检测,这已成为一个有争议的研究领域,因为由于人类发电的假含量重叠的潜力。本文是完整调查的缩写版本,并揭示了研究音频Deew饼的清晰,特别是检测音频Deewakes。
translated by 谷歌翻译
Simulation-based falsification is a practical testing method to increase confidence that the system will meet safety requirements. Because full-fidelity simulations can be computationally demanding, we investigate the use of simulators with different levels of fidelity. As a first step, we express the overall safety specification in terms of environmental parameters and structure this safety specification as an optimization problem. We propose a multi-fidelity falsification framework using Bayesian optimization, which is able to determine at which level of fidelity we should conduct a safety evaluation in addition to finding possible instances from the environment that cause the system to fail. This method allows us to automatically switch between inexpensive, inaccurate information from a low-fidelity simulator and expensive, accurate information from a high-fidelity simulator in a cost-effective way. Our experiments on various environments in simulation demonstrate that multi-fidelity Bayesian optimization has falsification performance comparable to single-fidelity Bayesian optimization but with much lower cost.
translated by 谷歌翻译
With the growth of editing and sharing images through the internet, the importance of protecting the images' authorship has increased. Robust watermarking is a known approach to maintaining copyright protection. Robustness and imperceptibility are two factors that are tried to be maximized through watermarking. Usually, there is a trade-off between these two parameters. Increasing the robustness would lessen the imperceptibility of the watermarking. This paper proposes an adaptive method that determines the strength of the watermark embedding in different parts of the cover image regarding its texture and brightness. Adaptive embedding increases the robustness while preserving the quality of the watermarked image. Experimental results also show that the proposed method can effectively reconstruct the embedded payload in different kinds of common watermarking attacks. Our proposed method has shown good performance compared to a recent technique.
translated by 谷歌翻译
In this paper, deep-learning-based approaches namely fine-tuning of pretrained convolutional neural networks (VGG16 and VGG19), and end-to-end training of a developed CNN model, have been used in order to classify X-Ray images into four different classes that include COVID-19, normal, opacity and pneumonia cases. A dataset containing more than 20,000 X-ray scans was retrieved from Kaggle and used in this experiment. A two-stage classification approach was implemented to be compared to the one-shot classification approach. Our hypothesis was that a two-stage model will be able to achieve better performance than a one-shot model. Our results show otherwise as VGG16 achieved 95% accuracy using one-shot approach over 5-fold of training. Future work will focus on a more robust implementation of the two-stage classification model Covid-TSC. The main improvement will be allowing data to flow from the output of stage-1 to the input of stage-2, where stage-1 and stage-2 models are VGG16 models fine-tuned on the Covid-19 dataset.
translated by 谷歌翻译
Chromosome analysis is essential for diagnosing genetic disorders. For hematologic malignancies, identification of somatic clonal aberrations by karyotype analysis remains the standard of care. However, karyotyping is costly and time-consuming because of the largely manual process and the expertise required in identifying and annotating aberrations. Efforts to automate karyotype analysis to date fell short in aberration detection. Using a training set of ~10k patient specimens and ~50k karyograms from over 5 years from the Fred Hutchinson Cancer Center, we created a labeled set of images representing individual chromosomes. These individual chromosomes were used to train and assess deep learning models for classifying the 24 human chromosomes and identifying chromosomal aberrations. The top-accuracy models utilized the recently introduced Topological Vision Transformers (TopViTs) with 2-level-block-Toeplitz masking, to incorporate structural inductive bias. TopViT outperformed CNN (Inception) models with >99.3% accuracy for chromosome identification, and exhibited accuracies >99% for aberration detection in most aberrations. Notably, we were able to show high-quality performance even in "few shot" learning scenarios. Incorporating the definition of clonality substantially improved both precision and recall (sensitivity). When applied to "zero shot" scenarios, the model captured aberrations without training, with perfect precision at >50% recall. Together these results show that modern deep learning models can approach expert-level performance for chromosome aberration detection. To our knowledge, this is the first study demonstrating the downstream effectiveness of TopViTs. These results open up exciting opportunities for not only expediting patient results but providing a scalable technology for early screening of low-abundance chromosomal lesions.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
Bayesian optimization (BO) is increasingly employed in critical applications such as materials design and drug discovery. An increasingly popular strategy in BO is to forgo the sole reliance on high-fidelity data and instead use an ensemble of information sources which provide inexpensive low-fidelity data. The overall premise of this strategy is to reduce the overall sampling costs by querying inexpensive low-fidelity sources whose data are correlated with high-fidelity samples. Here, we propose a multi-fidelity cost-aware BO framework that dramatically outperforms the state-of-the-art technologies in terms of efficiency, consistency, and robustness. We demonstrate the advantages of our framework on analytic and engineering problems and argue that these benefits stem from our two main contributions: (1) we develop a novel acquisition function for multi-fidelity cost-aware BO that safeguards the convergence against the biases of low-fidelity data, and (2) we tailor a newly developed emulator for multi-fidelity BO which enables us to not only simultaneously learn from an ensemble of multi-fidelity datasets, but also identify the severely biased low-fidelity sources that should be excluded from BO.
translated by 谷歌翻译
The BIOSCAN project, led by the International Barcode of Life Consortium, seeks to study changes in biodiversity on a global scale. One component of the project is focused on studying the species interaction and dynamics of all insects. In addition to genetically barcoding insects, over 1.5 million images per year will be collected, each needing taxonomic classification. With the immense volume of incoming images, relying solely on expert taxonomists to label the images would be impossible; however, artificial intelligence and computer vision technology may offer a viable high-throughput solution. Additional tasks including manually weighing individual insects to determine biomass, remain tedious and costly. Here again, computer vision may offer an efficient and compelling alternative. While the use of computer vision methods is appealing for addressing these problems, significant challenges resulting from biological factors present themselves. These challenges are formulated in the context of machine learning in this paper.
translated by 谷歌翻译
In the last few years, various types of machine learning algorithms, such as Support Vector Machine (SVM), Support Vector Regression (SVR), and Non-negative Matrix Factorization (NMF) have been introduced. The kernel approach is an effective method for increasing the classification accuracy of machine learning algorithms. This paper introduces a family of one-parameter kernel functions for improving the accuracy of SVM classification. The proposed kernel function consists of a trigonometric term and differs from all existing kernel functions. We show this function is a positive definite kernel function. Finally, we evaluate the SVM method based on the new trigonometric kernel, the Gaussian kernel, the polynomial kernel, and a convex combination of the new kernel function and the Gaussian kernel function on various types of datasets. Empirical results show that the SVM based on the new trigonometric kernel function and the mixed kernel function achieve the best classification accuracy. Moreover, some numerical results of performing the SVR based on the new trigonometric kernel function and the mixed kernel function are presented.
translated by 谷歌翻译